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ABSTRACT 

There  exists  a quasi regular  map  on R n (n  >_ 3) of  finite order for which 

every a E R n is an  asympto t i c  value. 

1. In troduct ion  

Let f :  ~n ~ R n be quasiregular (qr). Thus f E W~,loc(R n) and for some 

K _> 1, I f ' (x) l  n <_ K Jr (x )  a.e.; here f~ is the formal derivative of f ,  I f ' (x) l  is 

the operator norm, and ,If the Jacobian determinant. Standard references are 

[6] and [7]. The order of f is 

A = l imsup(n - 1 log logM(r )  

with M ( r )  = maxlxl= r I f(x)l .  

A number a E R n is an a s y m p t o t i c  va lue  of f if f ( x )  �9 a as Ixl , c~ on 

some path  7 C R n. In [5], I. Holopainen and S. Rickman constructed a qr map 

f on R n , n _> 3, with A = n - 1 and countably many asymptotic  values. Here we 

modify (and, in some ways, simplify) that  construction to prove 

THEOREM 1.1: There exists an entire qr map  f on R ~ (n >_ 3) of  order n - 1 

with every a E R n asymptotic.  

When n -- 2, Ahlfors's theorem asserts that  the number of distinct asymptot ic  

values of an analytic entire function of order A is at most 2A, and it follows tha t  
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the number is bounded for qr maps of finite order on 1~2 as well; see the discussion 

in [5]. 

However, if A = c~, W. Gross [4] has constructed an entire function with 

every value a asymptotic, and if f is allowed to have poles, A. Eremenko [3] has 

produced a meromorphic function with every a asymptotic and T(r, f ) ( logr)  -2 

tending to infinity as slowly as desired. (T(r, f )  is the Nevanlinna characteristic.) 

The distinction between R 2 and ]Rn (n > 3) is that the asymptotic curves do 

not partition the domain in higher dimensions. 

As in [5], this construction is a generalization of the entire function sin z/z, 

with p --- 1 and for which there are two asymptotic tracts (the positive/negative 

axes). These correspond to the common asymptotic value a = 0. The image 

of the asymptotic curve passes through 0 infinitely often, through periods of 

progressively smaller amplitude. 

Note that  if f has an asymptotic value, then its order (lower order) must be 

> c(n, K) > 0 [8]. 

We use standard notation: x E R n is written x = (X l , . . . ,  xn) = (x~,xn), and 

we identify R ~-1 with {x e R~;x,~ = 0}. Also, B(a,R) = { Ix -e l  < R}, B(R) = 

B(0, R), B = B(1), S(a, R) = OB(a, R), S(R) = OB(R), S = OB. For a e R ~, 

let 

Q(a,h) = {x E Rn;Ixj - a j l  < h, 1 <_j < n}. 

If x = (x',x~) C R n, �9 = (x ' , -xn ) ,  and for E C R ~, E -- {x;~ E E}. 

When these notions are applied to sets in R n - l ,  the corresponding sets are 

B' (a ,R) ,B ' (R) , . . . .  Finally, A'(r,s) = {x' e Rn-1; r  < Ix'l < s}, IIx'][* = 

maxl_<j_<n-1 Ixjl, and if E C Rn-1, F C R ~-1, d'(E, F) is their ( n -  1)-distance. 

ACKNOWLEDGEMENT: I thank Juha Heinonen for several useful discussions and 

detecting an error in my first version, and the authors of [5] for an advance copy. 

I am also grateful to the referee for an unusually careful scrutiny that  I trust is 

reflected in what appears now. 

2. A qr sine funct ion  

The procedure is a bit different from that  of [5], in that  we are more imitative of 

the classical sine function, rather than the (Zorich) exponential function, and we 

rely systematically on compositions with simple qc homeomorphisms. If S(x) is 

qr and H: R n * ~+ is smooth, the product HS in general is not qr. For it to 
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be qr with a carefully-chosen H, we shall see in Lemma 5.4 that  S is forced not 

only to be qr, but  be tocally linearly nondegenerate in the sense that  there exists 

c > 0 so that  for a.e. x 

(2.1) IS(x + p )  - S(x)l 
Ipl > clS(x) l  > o, Ipl < po(x). 

Many qr maps satisfy conditions like (2.1); a familiar example is the winding map 

[7, p. 13] near x = 0. Nothing like (2.1) holds in general for analytic functions 

near points of ramification; in particular (2.1) fails for sin z itself. 

As suggested in [7, p. 15], divide Ra into congruent cylinders C by means of 
1 the hyperplanes Hi,k: xj = ~ + k, 1 < j < n - 1, k E Z. Let Co be that  which 

1 sinh-l(1) ,  and we will contains 0. Let C~ = {x E Co;x~ > ~ -I[x~[[*}, let co = 

define a K-qc, L-bilipschitz map 

g: c ~  - - +  v + = {x e R~; Ix'l < r/2,x~ > co} 

with g g2 ogl .  Here gl (x ' , xn)  = (x',x,~ + IIx'll* ! )  maps c(~ onto Co + = 

{x E Co;x,~ > 0}, and g2(x' ,xn) = (k(x'),x,~ + co), where k is a K-qc locally 

L-bilipschitz map of Q'(0, �89 onto B ' (v /2) ,  maps C + to V +. 

The map h: V + �9 R ~ with 

(2.2) (y ,  y~) (; ' ,  r = sin [Y'I cosh Yn, cos [y'l sinh y~ 

sends V + 91 {y~ = c}, c > co, onto the upper half of the ellipsoid E(cosh c, sinh c) 

of height sinhc, base B'(coshc),  and this mapping is qc on V +. Indeed let 

X = {z = x + i y  E C;y > co}. Then for each fixed x' E S r, the function 

s: X ~- R ~ given by 

s(x, ~) = h(xx', y) 

= ((sgnx sin Ix[ cosh y)x', cos [x I sinh y) 

= (sin x cosh y)x ~ + (cos x sinh y)x,~ 

becomes the usual sine function when n = 2, x'  = 1, x2 = i. That  h is qr now 

follows as in [6, p. 65]. The composition 

(2.3) S -=- h o g 
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is qr and maps  C~ onto R~_\E(coshco, 1). 

The  function S is next  extended to all of Co. First,  for x E C~ set S(x)  = S(~). 

The  set 

T = Co\(C~ u C~) 

is a lipschitz polyhedron of height 1, and S maps  OT onto E = E(cosh  Co, sinh co} 

= E(coshco ,  1) in a bilipschitz manner .  S then may  be extended into T as a 

K-qc ,  L-bilipschitz homeomorph i sm onto E with S(~) = S(x) ,  S(O) = O. 

This  defines S on all of Co, and since S: OCo , Rn-1, S may  be repea ted ly  

reflected across the faces of the various cylinders C to be defined on all R n . The  

branch  set consists of the (n - 2)-cells which are common  to at  least three faces of  

the cylinders C,  together  with { U c  OC} MRn-1. Note tha t  i f x  E R n, x~ = c _> co, 

then  

Isinhcl  _< IS(x)I _< coshc. 

We call S a qr sine function: S is periodic (period 1) in each of the first n - 1 

variables,  IS] , c~ uniformly as ]x~ I , c~, and S(0) = 0. 

LEMMA 2.4: S is qr of order n - 1, and  there exists c > 0 such that (2.1) holds. 

Proof  T h a t  A = n - 1 follows from the above es t imate  of IS(x)l and the  

definition of order, and we have already seen tha t  S is qr. We next  consider 

(2.1). 

Let  y E V + and let P be (a / the)  two-dimensional  plane through y and the  

x I -- 0 axis. The  complex function sin z is analyt ic  wi th  (sin z) ~ = cos z, and 

Is inzI  > 1, IcoszI  > 1 when IIm z I > co > 0. Hence if also p E P, IpI < po(y), 

we find f rom (2.2) and the fact tha t  y ,  > 1 tha t  

Ih(y + p) - h(y)l > ailpllh(y)l (p e P, Ipl < p~(y)), 

and since h is K l - q c  a t  y, we deduce tha t  

(2.5) Ih(y + P) - h(y)l > alpilh(y)l (Ip[ < po(y)), 

where a -- a(al, K1, n). 

Since g is bilipsehitz, (2.1) follows from (2.3) and (2.5) for x E C~ U C~: 

IS(x + p) - S(x)I  = Ih(g(x + p)) - h(g(x)) I 

_> l~ lg(x  + p) - g(x) lS(x) 

_> clplS(=) (Ipl < po). 
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In addition, S is bilipschitz in T with IS(x)] < coshc0, so (2.1) again holds for 

x �9 T for some c > 0. Finally, we obtain (2.1) for all x by noting that S has 

been extended to all of R n by reflection on the faces of the cylinders C. 

Remarks 2.6: If we were to use (2.2) on all of V = {x �9 Rn; Ixq < 7r/2} rather 

than V +, estimate (2.1) would fail near the points of OV N R n-1 . Note also that  

if 0 < A < 1, each set 

(2.7) = {x  �9 R IS(x)l < A} 

is a disjoint union of n-cells, symmetric with respect to R,~-I, one compactly 

contained in each cylinder C, and to each of which may be associated a point 

(j, O) E Z n - 1  X {0} as center. 

3. A forest  o f  trees  

First, let L be a tree which for each k _> 1 contains 2 kn edges of generation k, 

each of which is attached to one edge of order k - 1 and to 2 n of order k + 1; 

generation 0 is the common initial point of the 2 ~ first-generation edges. Let S 

be the cell 

(3.1) S =  {xER'~;O<_xi < l , l  < i < n } .  

Then to each a E S is associated a path L(a) in L whose edge of generation 

k corresponds to the approximation to a of the first k binary digits in each 

coordinate: 

(3.2) 1 1 'n. n ak = . . . ,  . a la2  . . . a D  

i {0, 1}. This correspondence is coherent in the sense that  if an with each a m E 

edge of generation k joins one of generation k + 1, then ak - ak+l E Q(0, 2-k). 

Consider the integral points j = ( j l ,J2, . . . ,Jn)  E Z '~. The rank of j is the 

integer ]lJ]l = N = max IJkl. To each j E Z '~ will correspond the closed cell 

(3.3) Sj = { x E R n ;  O<_x~-j~<_l, l < i < n }  

in ~['~ and a tree Lj will be associated to j .  Each Lj is combinatorially equivalent 

to L, and each number b E Sj, where b = a + j ,  a E S, corresponds to the path 
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Lj (b) which is combinatorially congruent, to the L(a) described above. Note that  

U sj = N '~ . We say Lj is of rank N if ]lJll = N. 

Each Lj is realized geometrically in a unique region Dj C ]~n-1, such that each 

Dj and Dk are congruent by a rigid motion of E'~-I. Each Dj is a paraboloid 

region, with 
2 Do = {x';x2~ + ""TLXn_l < X l } ,  

and Dj is said to be of rank N if N is the rank of j .  We construct a rapidly- 

increasing sequence {rM}, with ro -- 0, such that the vertex of each Dj of rank 

N lies on S'(rN) and Dj C {[x'[ >_ rN}. The {rM} are chosen so that if Dj and 

Dk meet S(r) and d is Euclidean distance, then 

d(Dj A S'(r),Dk N S'(r)) > 2dM >>_ 1 (r >_ rM). 

By choosing the {rM} appropriately, the dM Too as fast as desired. In w we 

impose conditions which force the dM to increase rapidly. 

Each Lj of rank N is placed in Dj N{[x'[ > rN+l}. Those edges of Lj of gener- 

ation k, L~ k) are realized as straight lines in ] ~ n - 1  contained in Al(rN+k, rN+k+l) 
such that if ~ and E are of the kth generation but have different ancestors in 

L(k-1) then 2 

(3.4) d(g, ~') >_ 2dN+k 

and 

(3.5) d(g, ODj) > 2dN+k. 

Note that  only a fixed number of Dj meet any AI(rM, rM+l) , SO (3.4) and (3.5) 

can be ensured if rM+l/r M is large. 

4. Near-MSbius  mappings  

Our function f depends on two classes of quasiconformal mappings, which we 

call ~0 and ~k (k > 1). Our first result will yield ~0, and the others will follow 

from Lemma 4.2. 

LEMMA 4.1: Given K > 1, N >_ 0,6 > O, there exists R = R(K,N,~,n) such 
that to each b E Q(O, N + 1) corresponds a K-qc map ~ ofR n with 

= w (1 1 > R), 

= + b (w e Q(0, 
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LEMMA 4.2: Given K > 1, R > 0, there exists 6 = 6(K,  R, n) > 0 such tha t  to 

each a r Q(0, 6) corresponds a K - q c  map r o fR  n with 

r  = (1 1 > R), 

= w + a (w r Q(O, 5)). 

(The proofs are routine; for a proof in the two-dimensional case, see [1] or [2].) 

Remark 4.3: For a given K > 1, choose K0, K1 , . . .  > 1 with 

OO 

(4.4) HICk < K. 
0 

Then Lemma 4.2 is used with elementary normal family considerations. 

(A) For k > 1 let the {R~}, {&} be bounded, let {b~}~ be a bounded sequence. 

Let fJk be chosen as in Lemma 4.2 with data K = Kk, R = Rk,5 ---- 5k,a = 

bk - bk-1, where we suppose that 

bk - bk-1 �9 Q(0, 6k). (4.5) 

Let ~k satisfy 

(4.6) 

so that  

(4.7) 

If we write 

(4.8) 

~k(W) : Ck(W -- bk-1)  q- bk-1, 

= w + bk - bk+~ 

([w - bk-ll > Rk), 

(w C Q ( G - 1 ,  5k)). 

Ok = ~k o~k_l  o . . . o ~ 1  (k_> 1), 

then the Ok form a normal family of K-qc homeomorphisms. 

(B) If in addition ~ Rk < cc (so that  ~ 6k < co), then the {Ok} tend normally 

to a qc homeomorphism. 

Lemmas 4.1 and 4.2 give, for each N E Z +, sequences 

R o ( N )  > RI  > . "  > Rk  > "." , Rk  ~ O (k ~ oc), 
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and 5k (k _> 0) in the following way. First take 50 -- 1 and for each N _> 0 choose 

Ro = Ro(N) according to Lemma 4.1 with K = Ko, Ko from (4.4). Then for 

k _> 1, take inductively Rk so that 0 < Rk < min(Rk-1, 2 -k) and 

(4.9) B(6Rk) C Q(0, (~k-i), 

and then K = Kk and (fk from (4.4) and Lemma 4.2 respectively. The mappings 

~k will be constructed in w with specific b = bk, using (4.6) when k _> 1. Note 

that  Ro(N) -* oc(N --* oc) but that  } - ~  Rk < 1; thus alternative (B) will apply 

to any of our families {Ok}. 

Finally, we introduce a subsequence of integers {kp}p>0 with 

(4.10) 2 -kp _< 5p+l. 

5. P r o o f  of  T h e o r e m  1.1 

With ~o > 0 to be chosen, let H: R '~-1 

(5.1) 

(5.2) 

and 

(5.3) 

LEMMA 5.4: 

then 

�9 ~+ be smooth such that 

H(x')  = 1 (Q(x', 1) cl (uDj) = 0), 

H(x') < 1 + [x'l (x' E g(,~-l), 

IVlogH(x')  I < Eo (x' E Rn-1). 

I f  eo is sumciently small in (5.3), S(x) is from w and x = (x', x,~), 

fo(x) = H(x ' )S(x)  

is qr on R '~ , of order n-1. 

Proof: Let x and p be in ~'~. Then 

A/0 =/o(x +p) -/o(x) 
= S(x  +p) (H(x  +p) - H(x)) + H(x) (S(x  +p) - S(x)) 

= S A H  + HAS .  

By Lemma 2.4, H I A S  I > cHIS][p[ (IPl < P0), so that if e0 < �88 (5.3) implies 

that  

IIAfol - HIAS][ = IS[ lAg[ < 2Co IpIH[SI 

< �89 (tPl < Po). 
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Since S is K-qc, it follows that  if x is fixed and Ih] < ho(x), then 

sup IAfol ~ 3H(x) sup IASI 
Lpl=h Ipl=h 

< 3H(x)K inf I~SI 
- iPl=h 

< 3K inf IAfol, 
Ivl=h 

so by [7, p. 42] fo is qr. That fo has order n - 1 follows from (5.1), (5.2) and 

Lemma 2.4. 

Now let j 6 Z ~ be fixed with IlJll = N ,  and Dj C R n-1 and {dM} be as at the 

end of w In D~ we construct sets D3(p) (p > 0) with Dj(p) C {Ix'l > rN+k.+l} 
and 

�9 ..Dj(p) C Dj (p -  1) C " .  C Dj(O) C Dj, 

where the kp are from (4.10). Thus for m >_ N + kp + 1, let 

(5.5) Dj(p)NA'(rm,rm+l) = {x 6 DjNA'(r,~,rm+l), d'(x, Lj) < dm/(p+ 2)}; 

by (3.4) and (3.5) we have 2 ~k~ components Dj (p). Below we will usually think 

of j as fixed and usually write D(p) for Dj(p). The value of the {D(p)} is that  

if b = a + j and b' = a' + j are associated to two edges of Lj N D(p) for a single 

component D(p), then by (3.2) and (4.10), 

(5.6) b - b' = a - a' 6 Q(0,2 -kp) c Q(O, 5p+1). 

We may slightly perturb the D(p) so each OD(p) is composed of portions of 

Rn-' n { U o c  } , 

where the C's are the cylinders introduced in w 

Now let us construct f .  In order to achieve this, we will be forced to have the 

ratios dM+l/dM (and hence rM+l/rM in w increase rapidly. 

If x' E R n-1 , let C = C(x') be a cylinder C which contains x'. We demand, 

in addition to (5.1)-(5.3) that for each j 

(5.7) 3Ro(N) > H(x') > 2Ro(N), 

if IlJll = N and C(x') t30Dj(O) # 0. We then set 

(5.8) f(x) = H(x')S(x) (C(x') N {OjDj(0)} --- $). 
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While (5.7) asserts that H is large near each 0Dj(0), we now force H(x') to 

become small as x' * oc in Dj(O) near Li. Thus, given the {Rk}(k > 1) from 

w we require that 

(5.9) 2Rp < H(x') < Rp-1 (C(x') N ODj(p) ~ 0), 

(5.10) H(x') < Rp_l (x' �9 Dj(p)). 

Note that (5.9) and (5.10) do not depend on N = HJI[, and that all of (5.7), (5.9) 

and (5.10) are possible if the ratios dM+l/dM , oc sufficiently rapidly in w 

Now we augment (5.8) and define f in each [J D(0)\ U(D(1)); we have observed 

that there are 2 k~ such components inside each Dj. Recall the graph Lj C Dj. 

Then to each Dj (0) we choose bo = j + ao (with ao �9 S) which corresponds to 

some edge of Lj N D(0) as in (3.2). While b0 is far from unique, we have (5.6) 

with p = 0. Thus, to each component D(0), choose ~0 from Lemma 4.1 with 

K = K o ,  5 0 = l a n d b = b o = j + a o � 9  N + l), and set 

(5.11) f(x) = ~oo(H(x')S(x)) (x �9 D ( 0 ) \ U D ( 1 ) ) .  

In general, given p _> 1 and D(p) C Dj, then D(p) is nested in a family 

D(k), 0 < k < p - 1, each contained in Dj. Suppose f has been defined in each 

D(p- 1) by 

(5.12) f (x)  = ~p-1 o ~p-2 o . . . o  ~o(H(x')S(x)) (x �9 D(p - 1)\ UD(p)) ,  

where ~ao has just been described, and the ~k (1 < k < p - 1) have been selected 

in accord with Lemma 4.2 and (4.6) with R = Rk, 5 = 5k, K = Kk and 

ak �9 Q(O, hk) such that  bk = j + ak corresponds to a corresponding edge of 

Lj N D(k). Then to each D(p), we associate ap such that j + ap corresponds 

to an edge of Lj n D(p) as in w With a = ap, bp = j + ap, choose a Kp-qc 

homeomorphism from (4.6) (now with k = p), and set 

(5.13) f (x)  = ~ap o ~p-1 o . . .  o ~o(H(x')S(x)) (x �9 D(p)\ U D(p + 1)). 

This with (5.8), (5.11) and (5.12) defines f on ~ .  

What  is crtmial is to see that  f is continuous; once that  is settled, (4.4), (5.8) 

and (5.13) show f is Kl-qr for some K1 = KI(K,n) .  But S , H  and all ~'s are 

continuous, so we need only check continuity near each OD(p), when the factor 
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~p is introduced as from (5.12) to (5.13). Thus, let C(x') N OD(p) # 0. Then 

(5.9) and (2.7) imply that  H(x')]S(x)l > Rp. Our choices (4.9) and Lemmas 4.1 

and 4.2 imply that  Rp < ~p-1 < "'" < ~1 < ~0 and hence Lemmas 4.1 and 4.2 

(see (4.6) and (4.7)) show that  the orbit of B(0, Rp) under 9p-1 o . . .  o ~0 is 

(5.14) B(0, Rp) vo B(bo, Rv) ~ B(bl, Rp) Y--E . . .  vP-~ B(bp_~, Rp), 

and on B(0, Rp) this composition is the translation w * w + bp-1. Hence (4.7) 

shows that  definitions (5.12) and (5.13) coincide and so f is continuous. 

We now prove the Theorem. Let b = a + j E Sj, with IlJll = N. The curve 

L(b) on which ](x) , b has been described in w in each A'(rg+m, rg+m+l), 

kp <<_ m < kp+l, it is a segment s C Lj N D(p). So by (5.10) and (2.7), 

H(x')IS(x)I < Rp-1. Thus as x ~ ~ ,  x E L(b), (5.10)shows that  

H(x')S(x) ~ O. And by assumption ~ Rp < ~ ,  so by (B) of Remark 4.3 

the ~k in (4.8) tend to a qc-homeomorphism ~. However, since bp_l ~ b on 

L(b), (4.7), (4.8) and (5.14) show that 

r  = b. 

Hence as x --+ oo, x C L(b), we deduce from (5.11) and (5.14) that  

f (x) �9 o ) �9 o  0(0) 

=  (b0) = b. 

This completes the proof. 
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