

ON A METHOD OF HOLOPAINEN AND RICKMAN

BY

DAVID DRASIN

*Department of Mathematics, Purdue University**West Lafayette, IN 47907, USA**e-mail: drasin@math.purdue.edu*

ABSTRACT

There exists a quasiregular map on \mathbb{R}^n ($n \geq 3$) of finite order for which every $a \in \mathbb{R}^n$ is an asymptotic value.

1. Introduction

Let $f: \mathbb{R}^n \rightarrow \mathbb{R}^n$ be quasiregular (qr). Thus $f \in W_{n,loc}^1(\mathbb{R}^n)$ and for some $K \geq 1$, $|f'(x)|^n \leq K J_f(x)$ a.e.; here f' is the formal derivative of f , $|f'(x)|$ is the operator norm, and J_f the Jacobian determinant. Standard references are [6] and [7]. The order of f is

$$\lambda = \limsup_{r \rightarrow \infty} (n-1) \frac{\log \log M(r)}{\log r},$$

with $M(r) = \max_{|x|=r} |f(x)|$.

A number $a \in \mathbb{R}^n$ is an **asymptotic value** of f if $f(x) \rightarrow a$ as $|x| \rightarrow \infty$ on some path $\gamma \subset \mathbb{R}^n$. In [5], I. Holopainen and S. Rickman constructed a qr map f on \mathbb{R}^n , $n \geq 3$, with $\lambda = n-1$ and countably many asymptotic values. Here we modify (and, in some ways, simplify) that construction to prove

THEOREM 1.1: *There exists an entire qr map f on \mathbb{R}^n ($n \geq 3$) of order $n-1$ with every $a \in \mathbb{R}^n$ asymptotic.*

When $n = 2$, Ahlfors's theorem asserts that the number of distinct asymptotic values of an analytic entire function of order λ is at most 2λ , and it follows that

Received December 12, 1994 and in revised form August 26, 1996

the number is bounded for qr maps of finite order on \mathbb{R}^2 as well; see the discussion in [5].

However, if $\lambda = \infty$, W. Gross [4] has constructed an entire function with every value a asymptotic, and if f is allowed to have poles, A. Eremenko [3] has produced a meromorphic function with every a asymptotic and $T(r, f)(\log r)^{-2}$ tending to infinity as slowly as desired. ($T(r, f)$ is the Nevanlinna characteristic.)

The distinction between \mathbb{R}^2 and \mathbb{R}^n ($n \geq 3$) is that the asymptotic curves do not partition the domain in higher dimensions.

As in [5], this construction is a generalization of the entire function $\sin z/z$, with $\rho = 1$ and for which there are two asymptotic tracts (the positive/negative axes). These correspond to the common asymptotic value $a = 0$. The image of the asymptotic curve passes through 0 infinitely often, through periods of progressively smaller amplitude.

Note that if f has an asymptotic value, then its order (lower order) must be $> c(n, K) > 0$ [8].

We use standard notation: $x \in \mathbb{R}^n$ is written $x = (x_1, \dots, x_n) = (x', x_n)$, and we identify \mathbb{R}^{n-1} with $\{x \in \mathbb{R}^n; x_n = 0\}$. Also, $B(a, R) = \{|x - a| < R\}$, $B(R) = B(0, R)$, $B = B(1)$, $S(a, R) = \partial B(a, R)$, $S(R) = \partial B(R)$, $S = \partial B$. For $a \in \mathbb{R}^n$, let

$$Q(a, h) = \{x \in \mathbb{R}^n; |x_j - a_j| < h, 1 \leq j \leq n\}.$$

If $x = (x', x_n) \in \mathbb{R}^n$, $\bar{x} = (x', -x_n)$, and for $E \subset \mathbb{R}^n$, $\bar{E} = \{x; \bar{x} \in E\}$. When these notions are applied to sets in \mathbb{R}^{n-1} , the corresponding sets are $B'(a, R), B'(R), \dots$. Finally, $A'(r, s) = \{x' \in \mathbb{R}^{n-1}; r < |x'| < s\}$, $\|x'\|^* = \max_{1 \leq j \leq n-1} |x_j|$, and if $E \subset \mathbb{R}^{n-1}$, $F \subset \mathbb{R}^{n-1}$, $d'(E, F)$ is their $(n-1)$ -distance.

ACKNOWLEDGEMENT: I thank Juha Heinonen for several useful discussions and detecting an error in my first version, and the authors of [5] for an advance copy. I am also grateful to the referee for an unusually careful scrutiny that I trust is reflected in what appears now.

2. A qr sine function

The procedure is a bit different from that of [5], in that we are more imitative of the classical sine function, rather than the (Zorich) exponential function, and we rely systematically on compositions with simple qc homeomorphisms. If $S(x)$ is qr and $H: \mathbb{R}^n \rightarrow \mathbb{R}^+$ is smooth, the product HS in general is not qr. For it to

be qr with a carefully-chosen H , we shall see in Lemma 5.4 that S is forced not only to be qr, but be *locally linearly nondegenerate* in the sense that there exists $c > 0$ so that for a.e. x

$$(2.1) \quad \frac{|S(x+p) - S(x)|}{|p|} > c|S(x)| > 0, \quad |p| < p_0(x).$$

Many qr maps satisfy conditions like (2.1); a familiar example is the winding map [7, p. 13] near $x = 0$. Nothing like (2.1) holds in general for analytic functions near points of ramification; in particular (2.1) fails for $\sin z$ itself.

As suggested in [7, p. 15], divide \mathbb{R}^n into congruent cylinders C by means of the hyperplanes $H_{j,k}$: $x_j = \frac{1}{2} + k$, $1 \leq j \leq n-1$, $k \in \mathbb{Z}$. Let C_0 be that which contains 0. Let $C_0^* = \{x \in C_0; x_n > \frac{1}{2} - \|x'\|^*\}$, let $c_0 = \sinh^{-1}(1)$, and we will define a K -qc, L -bilipschitz map

$$g: C_0^* \longrightarrow V^+ = \{x \in \mathbb{R}^n; |x'| < \pi/2, x_n > c_0\}$$

with $g = g_2 \circ g_1$. Here $g_1(x', x_n) = (x', x_n + \|x'\|^* - \frac{1}{2})$ maps C_0^* onto $C_0^+ = \{x \in C_0; x_n > 0\}$, and $g_2(x', x_n) = (k(x'), x_n + c_0)$, where k is a K -qc locally L -bilipschitz map of $Q'(0, \frac{1}{2})$ onto $B'(\pi/2)$, maps C_0^+ to V^+ .

The map $h: V^+ \longrightarrow \mathbb{R}^n$ with

$$(2.2) \quad h(y', y_n) = (\zeta', \zeta_n) = \left(\frac{y'}{|y'|} \sin |y'| \cosh y_n, \cos |y'| \sinh y_n \right)$$

sends $V^+ \cap \{y_n = c\}$, $c > c_0$, onto the upper half of the ellipsoid $E(\cosh c, \sinh c)$ of height $\sinh c$, base $B'(\cosh c)$, and this mapping is qc on V^+ . Indeed let $X = \{z = x + iy \in \mathbb{C}; y > c_0\}$. Then for each fixed $x' \in S'$, the function $s: X \longrightarrow \mathbb{R}^n$ given by

$$\begin{aligned} s(x, y) &= h(xx', y) \\ &= ((\operatorname{sgn} x \sin |x| \cosh y)x', \cos |x| \sinh y) \\ &= (\sin x \cosh y)x' + (\cos x \sinh y)x_n \end{aligned}$$

becomes the usual sine function when $n = 2$, $x' = 1$, $x_2 = i$. That h is qr now follows as in [6, p. 65]. The composition

$$(2.3) \quad S = h \circ g$$

is qr and maps C_0^* onto $\mathbb{R}_+^n \setminus E(\cosh c_0, 1)$.

The function S is next extended to all of C_0 . First, for $x \in \overline{C_0^*}$ set $S(x) = S(\bar{x})$. The set

$$T = C_0 \setminus (C_0^* \cup \overline{C_0^*})$$

is a lipschitz polyhedron of height 1, and S maps ∂T onto $E = E(\cosh c_0, \sinh c_0) = E(\cosh c_0, 1)$ in a bilipschitz manner. S then may be extended into T as a K -qc, L -bilipschitz homeomorphism onto E with $S(\bar{x}) = \overline{S(x)}$, $S(0) = 0$.

This defines S on all of C_0 , and since $S: \partial C_0 \rightarrow \mathbb{R}^{n-1}$, S may be repeatedly reflected across the faces of the various cylinders C to be defined on all \mathbb{R}^n . The branch set consists of the $(n-2)$ -cells which are common to at least three faces of the cylinders C , together with $\{\bigcup_C \partial C\} \cap \mathbb{R}^{n-1}$. Note that if $x \in \mathbb{R}^n$, $x_n = c \geq c_0$, then

$$|\sinh c| \leq |S(x)| \leq \cosh c.$$

We call S a qr sine function: S is periodic (period 1) in each of the first $n-1$ variables, $|S| \rightarrow \infty$ uniformly as $|x_n| \rightarrow \infty$, and $S(0) = 0$.

LEMMA 2.4: *S is qr of order $n-1$, and there exists $c > 0$ such that (2.1) holds.*

Proof. That $\lambda = n-1$ follows from the above estimate of $|S(x)|$ and the definition of order, and we have already seen that S is qr. We next consider (2.1).

Let $y \in V^+$ and let P be (a/the) two-dimensional plane through y and the $x' = 0$ axis. The complex function $\sin z$ is analytic with $(\sin z)' = \cos z$, and $|\sin z| > 1$, $|\cos z| > 1$ when $|\operatorname{Im} z| > c_0 > 0$. Hence if also $p \in P$, $|p| < p_0(y)$, we find from (2.2) and the fact that $y_n > 1$ that

$$|h(y+p) - h(y)| \geq a_1|p||h(y)| \quad (p \in P, |p| < p_1(y)),$$

and since h is K_1 -qc at y , we deduce that

$$(2.5) \quad |h(y+p) - h(y)| > a|p||h(y)| \quad (|p| < p_0(y)),$$

where $a = a(a_1, K_1, n)$.

Since g is bilipschitz, (2.1) follows from (2.3) and (2.5) for $x \in C_0^* \cup \overline{C_0^*}$:

$$\begin{aligned} |S(x+p) - S(x)| &= |h(g(x+p)) - h(g(x))| \\ &\geq \frac{1}{2}a|g(x+p) - g(x)|S(x) \\ &\geq c|p|S(x) \quad (|p| < p_0). \end{aligned}$$

In addition, S is bilipschitz in T with $|S(x)| \leq \cosh c_0$, so (2.1) again holds for $x \in T$ for some $c > 0$. Finally, we obtain (2.1) for all x by noting that S has been extended to all of \mathbb{R}^n by reflection on the faces of the cylinders C .

Remarks 2.6: If we were to use (2.2) on all of $V = \{x \in \mathbb{R}^n; |x'| < \pi/2\}$ rather than V^+ , estimate (2.1) would fail near the points of $\partial V \cap \mathbb{R}^{n-1}$. Note also that if $0 < \lambda \leq 1$, each set

$$(2.7) \quad W_\lambda = \{x \in \mathbb{R}^n, |S(x)| < \lambda\}$$

is a disjoint union of n -cells, symmetric with respect to \mathbb{R}^{n-1} , one compactly contained in each cylinder C , and to each of which may be associated a point $(j, 0) \in \mathbb{Z}^{n-1} \times \{0\}$ as center.

3. A forest of trees

First, let L be a tree which for each $k \geq 1$ contains 2^{kn} edges of generation k , each of which is attached to one edge of order $k-1$ and to 2^n of order $k+1$; generation 0 is the common initial point of the 2^n first-generation edges. Let S be the cell

$$(3.1) \quad S = \{x \in \mathbb{R}^n; 0 \leq x_i \leq 1, 1 \leq i \leq n\}.$$

Then to each $a \in S$ is associated a path $L(a)$ in L whose edge of generation k corresponds to the approximation to a of the first k binary digits in each coordinate:

$$(3.2) \quad a_k = (.a_1^1 a_2^1 \dots a_k^1, \dots, .a_1^n a_2^n \dots a_k^n)$$

with each $a_m^i \in \{0, 1\}$. This correspondence is coherent in the sense that if an edge of generation k joins one of generation $k+1$, then $a_k - a_{k+1} \in Q(0, 2^{-k})$.

Consider the integral points $j = (j_1, j_2, \dots, j_n) \in \mathbb{Z}^n$. The rank of j is the integer $\|j\| = N = \max |j_k|$. To each $j \in \mathbb{Z}^n$ will correspond the closed cell

$$(3.3) \quad S_j = \{x \in \mathbb{R}^n; 0 \leq x_i - j_i \leq 1, 1 \leq i \leq n\}$$

in \mathbb{R}^n and a tree L_j will be associated to j . Each L_j is combinatorially equivalent to L , and each number $b \in S_j$, where $b = a + j$, $a \in S$, corresponds to the path

$L_j(b)$ which is combinatorially congruent to the $L(a)$ described above. Note that $\bigcup \overline{S_j} = \mathbb{R}^n$. We say L_j is of rank N if $\|j\| = N$.

Each L_j is realized geometrically in a unique region $D_j \subset \mathbb{R}^{n-1}$, such that each D_j and D_k are congruent by a rigid motion of \mathbb{R}^{n-1} . Each D_j is a paraboloid region, with

$$D_0 = \{x'; x_2^2 + \cdots + x_{n-1}^2 < x_1\},$$

and D_j is said to be of rank N if N is the rank of j . We construct a rapidly-increasing sequence $\{r_M\}$, with $r_0 = 0$, such that the vertex of each D_j of rank N lies on $S'(r_N)$ and $D_j \subset \{|x'| \geq r_N\}$. The $\{r_M\}$ are chosen so that if D_j and D_k meet $S(r)$ and d is Euclidean distance, then

$$d(D_j \cap S'(r), D_k \cap S'(r)) \geq 2d_M \geq 1 \quad (r \geq r_M).$$

By choosing the $\{r_M\}$ appropriately, the $d_M \uparrow \infty$ as fast as desired. In §5 we impose conditions which force the d_M to increase rapidly.

Each L_j of rank N is placed in $D_j \cap \{|x'| \geq r_{N+1}\}$. Those edges of L_j of generation k , $L_j^{(k)}$ are realized as straight lines in \mathbb{R}^{n-1} contained in $A'(r_{N+k}, r_{N+k+1})$ such that if ℓ and ℓ' are of the k th generation but have different ancestors in $L_j^{(k-1)}$, then

$$(3.4) \quad d(\ell, \ell') \geq 2d_{N+k}$$

and

$$(3.5) \quad d(\ell, \partial D_j) \geq 2d_{N+k}.$$

Note that only a fixed number of D_j meet any $A'(r_M, r_{M+1})$, so (3.4) and (3.5) can be ensured if r_{M+1}/r_M is large.

4. Near-Möbius mappings

Our function f depends on two classes of quasiconformal mappings, which we call φ_0 and φ_k ($k \geq 1$). Our first result will yield φ_0 , and the others will follow from Lemma 4.2.

LEMMA 4.1: *Given $K > 1, N \geq 0, \delta > 0$, there exists $R = R(K, N, \delta, n)$ such that to each $b \in Q(0, N+1)$ corresponds a K -qc map φ of \mathbb{R}^n with*

$$\begin{aligned} \varphi(w) &= w & (|w| > R), \\ &= w + b & (w \in Q(0, \delta)). \end{aligned}$$

LEMMA 4.2: Given $K > 1, R > 0$, there exists $\delta = \delta(K, R, n) > 0$ such that to each $a \in Q(0, \delta)$ corresponds a K -qc map ψ of \mathbb{R}^n with

$$\begin{aligned}\psi(w) &= w & (|w| > R), \\ &= w + a & (w \in Q(0, \delta)).\end{aligned}$$

(The proofs are routine; for a proof in the two-dimensional case, see [1] or [2].)

Remark 4.3: For a given $K > 1$, choose $K_0, K_1, \dots > 1$ with

$$(4.4) \quad \prod_0^\infty K_k < K.$$

Then Lemma 4.2 is used with elementary normal family considerations.

(A) For $k \geq 1$ let the $\{R_k\}, \{\delta_k\}$ be bounded, let $\{b_k\}_0^\infty$ be a bounded sequence. Let ψ_k be chosen as in Lemma 4.2 with data $K = K_k, R = R_k, \delta = \delta_k, a = b_k - b_{k-1}$, where we suppose that

$$(4.5) \quad b_k - b_{k-1} \in Q(0, \delta_k).$$

Let φ_k satisfy

$$(4.6) \quad \varphi_k(w) = \psi_k(w - b_{k-1}) + b_{k-1},$$

so that

$$\begin{aligned}\varphi_k(w) &= w & (|w - b_{k-1}| > R_k), \\ (4.7) \quad &= w + b_k - b_{k+1} & (w \in Q(b_{k-1}, \delta_k)).\end{aligned}$$

If we write

$$(4.8) \quad \Phi_k = \varphi_k \circ \varphi_{k-1} \circ \dots \circ \varphi_1 \quad (k \geq 1),$$

then the Φ_k form a normal family of K -qc homeomorphisms.

(B) If in addition $\sum R_k < \infty$ (so that $\sum \delta_k < \infty$), then the $\{\Phi_k\}$ tend normally to a qc homeomorphism.

Lemmas 4.1 and 4.2 give, for each $N \in \mathbb{Z}^+$, sequences

$$R_0(N) > R_1 > \dots > R_k > \dots, \quad R_k \rightarrow 0 \quad (k \rightarrow \infty),$$

and δ_k ($k \geq 0$) in the following way. First take $\delta_0 = 1$ and for each $N \geq 0$ choose $R_0 = R_0(N)$ according to Lemma 4.1 with $K = K_0, K_0$ from (4.4). Then for $k \geq 1$, take inductively R_k so that $0 < R_k < \min(R_{k-1}, 2^{-k})$ and

$$(4.9) \quad B(6R_k) \subset Q(0, \delta_{k-1}),$$

and then $K = K_k$ and δ_k from (4.4) and Lemma 4.2 respectively. The mappings φ_k will be constructed in §5 with specific $b = b_k$, using (4.6) when $k \geq 1$. Note that $R_0(N) \rightarrow \infty (N \rightarrow \infty)$ but that $\sum_1^\infty R_k < 1$; thus alternative (B) will apply to any of our families $\{\Phi_k\}$.

Finally, we introduce a subsequence of integers $\{k_p\}_{p \geq 0}$ with

$$(4.10) \quad 2^{-k_p} \leq \delta_{p+1}.$$

5. Proof of Theorem 1.1

With $\varepsilon_0 > 0$ to be chosen, let $H: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^+$ be smooth such that

$$(5.1) \quad H(x') = 1 \quad (Q(x', 1) \cap (\cup D_j) = \emptyset),$$

$$(5.2) \quad H(x') \leq 1 + |x'| \quad (x' \in \mathbb{R}^{n-1}),$$

and

$$(5.3) \quad |\nabla \log H(x')| < \varepsilon_0 \quad (x' \in \mathbb{R}^{n-1}).$$

LEMMA 5.4: *If ε_0 is sufficiently small in (5.3), $S(x)$ is from §2, and $x = (x', x_n)$, then*

$$f_0(x) = H(x')S(x)$$

is qr on \mathbb{R}^n , of order $n-1$.

Proof: Let x and p be in \mathbb{R}^n . Then

$$\begin{aligned} \Delta f_0 &= f_0(x + p) - f_0(x) \\ &= S(x + p)(H(x + p) - H(x)) + H(x)(S(x + p) - S(x)) \\ &= S\Delta H + H\Delta S. \end{aligned}$$

By Lemma 2.4, $H|\Delta S| > cH|S||p|$ ($|p| < p_0$), so that if $\varepsilon_0 < \frac{1}{4}c$, (5.3) implies that

$$\begin{aligned} ||\Delta f_0| - H|\Delta S|| &= |S| |\Delta H| < 2\varepsilon_0 |p| H|S| \\ &< \frac{1}{2}H|\Delta S| \quad (|p| < p_0). \end{aligned}$$

Since S is K -qc, it follows that if x is fixed and $|h| < h_0(x)$, then

$$\begin{aligned} \sup_{|p|=h} |\Delta f_0| &\leq \frac{3}{2} H(x) \sup_{|p|=h} |\Delta S| \\ &\leq \frac{3}{2} H(x) K \inf_{|p|=h} |\Delta S| \\ &\leq 3K \inf_{|p|=h} |\Delta f_0|, \end{aligned}$$

so by [7, p. 42] f_0 is qr. That f_0 has order $n - 1$ follows from (5.1), (5.2) and Lemma 2.4.

Now let $j \in \mathbb{Z}^n$ be fixed with $\|j\| = N$, and $D_j \subset \mathbb{R}^{n-1}$ and $\{d_M\}$ be as at the end of §3. In D_j we construct sets $D_j(p)$ ($p \geq 0$) with $D_j(p) \subset \{|x'| > r_{N+k_p+1}\}$ and

$$\cdots D_j(p) \subset D_j(p-1) \subset \cdots \subset D_j(0) \subset D_j,$$

where the k_p are from (4.10). Thus for $m \geq N + k_p + 1$, let

$$(5.5) \quad D_j(p) \cap A'(r_m, r_{m+1}) = \{x \in D_j \cap A'(r_m, r_{m+1}), d'(x, L_j) < d_m/(p+2)\};$$

by (3.4) and (3.5) we have 2^{nk_p} components $D_j(p)$. Below we will usually think of j as fixed and usually write $D(p)$ for $D_j(p)$. The value of the $\{D(p)\}$ is that if $b = a + j$ and $b' = a' + j$ are associated to two edges of $L_j \cap D(p)$ for a single component $D(p)$, then by (3.2) and (4.10),

$$(5.6) \quad b - b' = a - a' \in Q(0, 2^{-k_p}) \subset Q(0, \delta_{p+1}).$$

We may slightly perturb the $D(p)$ so each $\partial D(p)$ is composed of portions of

$$\mathbb{R}^{n-1} \cap \{\bigcup \partial C\},$$

where the C 's are the cylinders introduced in §2.

Now let us construct f . In order to achieve this, we will be forced to have the ratios d_{M+1}/d_M (and hence r_{M+1}/r_M in §3) increase rapidly.

If $x' \in \mathbb{R}^{n-1}$, let $C = C(x')$ be a cylinder C which contains x' . We demand, in addition to (5.1)–(5.3) that for each j

$$(5.7) \quad 3R_0(N) > H(x') > 2R_0(N),$$

if $\|j\| = N$ and $C(x') \cap \partial D_j(0) \neq \emptyset$. We then set

$$(5.8) \quad f(x) = H(x')S(x) \quad (C(x') \cap \{\cup_j D_j(0)\} = \emptyset).$$

While (5.7) asserts that H is large near each $\partial D_j(0)$, we now force $H(x')$ to become small as $x' \rightarrow \infty$ in $D_j(0)$ near L_j . Thus, given the $\{R_k\}$ ($k \geq 1$) from §4, we require that

$$(5.9) \quad 2R_p < H(x') < R_{p-1} \quad (C(x') \cap \partial D_j(p) \neq \emptyset),$$

$$(5.10) \quad H(x') < R_{p-1} \quad (x' \in D_j(p)).$$

Note that (5.9) and (5.10) do not depend on $N = \|j\|$, and that all of (5.7), (5.9) and (5.10) are possible if the ratios $d_{M+1}/d_M \rightarrow \infty$ sufficiently rapidly in §3.

Now we augment (5.8) and define f in each $\bigcup D(0) \setminus \bigcup (D(1))$; we have observed that there are 2^{k_0} such components inside each D_j . Recall the graph $L_j \subset D_j$. Then to each $D_j(0)$ we choose $b_0 = j + a_0$ (with $a_0 \in S$) which corresponds to some edge of $L_j \cap D(0)$ as in (3.2). While b_0 is far from unique, we have (5.6) with $p = 0$. Thus, to each component $D(0)$, choose φ_0 from Lemma 4.1 with $K = K_0$, $\delta_0 = 1$ and $b = b_0 = j + a_0 \in Q(0, N+1)$, and set

$$(5.11) \quad f(x) = \varphi_0(H(x')S(x)) \quad (x \in D(0) \setminus \bigcup D(1)).$$

In general, given $p \geq 1$ and $D(p) \subset D_j$, then $D(p)$ is nested in a family $D(k)$, $0 \leq k < p-1$, each contained in D_j . Suppose f has been defined in each $D(p-1)$ by

$$(5.12) \quad f(x) = \varphi_{p-1} \circ \varphi_{p-2} \circ \cdots \circ \varphi_0(H(x')S(x)) \quad (x \in D(p-1) \setminus \bigcup D(p)),$$

where φ_0 has just been described, and the φ_k ($1 \leq k \leq p-1$) have been selected in accord with Lemma 4.2 and (4.6) with $R = R_k$, $\delta = \delta_k$, $K = K_k$ and $a_k \in Q(0, \delta_k)$ such that $b_k = j + a_k$ corresponds to a corresponding edge of $L_j \cap D(k)$. Then to each $D(p)$, we associate a_p such that $j + a_p$ corresponds to an edge of $L_j \cap D(p)$ as in §3. With $a = a_p$, $b_p = j + a_p$, choose a K_p -qc homeomorphism from (4.6) (now with $k = p$), and set

$$(5.13) \quad f(x) = \varphi_p \circ \varphi_{p-1} \circ \cdots \circ \varphi_0(H(x')S(x)) \quad (x \in D(p) \setminus \bigcup D(p+1)).$$

This with (5.8), (5.11) and (5.12) defines f on \mathbb{R}^n .

What is crucial is to see that f is continuous; once that is settled, (4.4), (5.8) and (5.13) show f is K_1 -qr for some $K_1 = K_1(K, n)$. But S, H and all φ 's are continuous, so we need only check continuity near each $\partial D(p)$, when the factor

φ_p is introduced as from (5.12) to (5.13). Thus, let $C(x') \cap \partial D(p) \neq \emptyset$. Then (5.9) and (2.7) imply that $H(x')|S(x)| > R_p$. Our choices (4.9) and Lemmas 4.1 and 4.2 imply that $R_p < \delta_{p-1} < \dots < \delta_1 < \delta_0$ and hence Lemmas 4.1 and 4.2 (see (4.6) and (4.7)) show that the orbit of $B(0, R_p)$ under $\varphi_{p-1} \circ \dots \circ \varphi_0$ is

$$(5.14) \quad B(0, R_p) \xrightarrow{\varphi_0} B(b_0, R_p) \xrightarrow{\varphi_1} B(b_1, R_p) \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_{p-1}} B(b_{p-1}, R_p),$$

and on $B(0, R_p)$ this composition is the translation $w \rightarrow w + b_{p-1}$. Hence (4.7) shows that definitions (5.12) and (5.13) coincide and so f is continuous.

We now prove the Theorem. Let $b = a + j \in S_j$, with $\|j\| = N$. The curve $L(b)$ on which $f(x) \rightarrow b$ has been described in §3: in each $A'(r_{N+m}, r_{N+m+1})$, $k_p \leq m < k_{p+1}$, it is a segment $\ell \subset L_j \cap D(p)$. So by (5.10) and (2.7), $H(x')|S(x)| < R_{p-1}$. Thus as $x \rightarrow \infty$, $x \in L(b)$, (5.10) shows that $H(x')S(x) \rightarrow 0$. And by assumption $\sum R_p < \infty$, so by (B) of Remark 4.3 the Φ_k in (4.8) tend to a qc-homeomorphism Φ . However, since $b_{p-1} \rightarrow b$ on $L(b)$, (4.7), (4.8) and (5.14) show that

$$\Phi(b_0) = b.$$

Hence as $x \rightarrow \infty$, $x \in L(b)$, we deduce from (5.11) and (5.14) that

$$\begin{aligned} f(x) &\rightarrow \Phi \circ \varphi_0(H(x')S(x)) \rightarrow \Phi \circ \varphi_0(0) \\ &= \Phi(b_0) = b. \end{aligned}$$

This completes the proof.

References

- [1] D. Drasin, *The inverse problem of the Nevanlinna theory*, Acta Mathematica **138** (1977), 83–151.
- [2] D. Drasin and W.K. Hayman, *Value distribution of functions meromorphic in an angle*, Proceedings of the London Mathematical Society (3) **48** (1984), 319–340.
- [3] A. Eremenko, *The set of asymptotic values of a meromorphic function of finite order* (in Russian), Matematicheskie Zametki; English translation: Mathematical Notes **24** (1979), 914–916.
- [4] W. Gross, *Eine ganz Funktion, für die jede komplexe Zahl Konvergenzwert ist*, Mathematische Annalen **79** (1918), 201–208.

- [5] I. Holopainen and S. Rickman, *The problem of the Denjoy theorem for quasiregular maps in dimension $n \geq 3$* , Proceedings of the American Mathematical Society **124** (1996), 1783–1788.
- [6] Yu. G. Reshetnyak, *Space Mappings with Bounded Distortion* (in Russian), Nauka, Moscow, 1982; English translation: Translations of Mathematical Monographs 73, American Mathematical Society, Providence, RI, 1989.
- [7] S. Rickman, *Quasiregular Mappings*, *Ergebnisse der Mathematik (3)* Band 26, Springer-Verlag, Berlin, 1993.
- [8] S. Rickman and M. Vuorinen, *On the order of quasiregular mappings*, *Annales Academicae Scientiarum Fennicae, Series AI Mathematics* **7** (1982), 221–231.