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ABSTRACT
There exists a quasiregular map on R™ (n > 3) of finite order for which

every a € R" is an asymptotic value.

1. Introduction

Let f: R* — R™ be quasiregular (qr). Thus f € W}, .(R") and for some
K > 1, |f'(x)|® < KJs(z) a.e.; here f' is the formal derivative of f,|f'(z)| is
the operator norm, and J; the Jacobian determinant. Standard references are
(6] and [7]. The order of f is

A = limsup(n — l)lo_glig_l\_ﬂﬂ

00 ]Og T ’

with M(r) = max; =, | f(z)|-

A number a € R" is an asymptotic value of f if f(z) —a as || — 00 on
some path v C R™. In [5], I. Holopainen and S. Rickman constructed a qr map
fonR* n >3, with A = n—1 and countably many asymptotic values. Here we

modify (and, in some ways, simplify) that construction to prove

THEOREM 1.1: There exists an entire qr map f on R* (n > 3) of order n — 1
with every a € R* asymptotic.

When n = 2, Ahlfors’s theorem asserts that the number of distinct asymptotic
values of an analytic entire function of order A is at most 2, and it follows that
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the number is bounded for qr maps of finite order on R? as well; see the discussion
in [5].

However, if A = oo, W. Gross [4] has constructed an entire function with
every value a asymptotic, and if f is allowed to have poles, A. Eremenko [3] has
produced a meromorphic function with every a asymptotic and T'(r, f)(logr) 2
tending to infinity as slowly as desired. (T'(r, f) is the Nevanlinna characteristic.)

The distinction between R?> and R* (n > 3) is that the asymptotic curves do
not partition the domain in higher dimensions.

As in [5], this construction is a generalization of the entire function sinz/z,
with p = 1 and for which there are two asymptotic tracts (the positive/negative
axes). These correspond to the common asymptotic value ¢ = 0. The image
of the asymptotic curve passes through O infinitely often, through periods of
progressively smaller amplitude.

Note that if f has an asymptotic value, then its order (lower order) must be
> ¢(n,K) > 08].

We use standard notation: z € R” is written = = (z1,...,2,) = (z’,2,), and
we identify R*~! with {x € R";x, = 0}. Also, B{a,R) = {|z—a| < R}, B(R) =
B(0,R), B = B(1), S(a,R)=0B(a,R), S(R) = 0B(R), S =0B. For a € R,
let

Qa,h) = {z € R*;|z; —a;j| < h,1 < j<n}.

If 2 = (¢/,2,) € R*, T = (2/,—z,), and for E C R*, E = {;% € E}.
When these notions are applied to sets in R*™!, the corresponding sets are
B'(a,R),B'(R),.... Finally, A'(r,s) = {z’ € R""L;r < |2'| < s}, |I2')I* =
maxi<j<n—1/;j|, and if E CR*~}, F C R*L, d/(E, F) is their (n — 1)-distance.

ACKNOWLEDGEMENT: I thank Juha Heinonen for several useful discussions and
detecting an error in my first version, and the authors of [5] for an advance copy.
I am also grateful to the referee for an unusually careful scrutiny that I trust is
reflected in what appears now.

2. A qr sine function

The procedure is a bit different from that of [5], in that we are more imitative of
the classical sine function, rather than the (Zorich) exponential function, and we
rely systematically on compositions with simple q¢c homeomorphisms. If S(z) is
gr and H: R® — Rt is smooth, the product HS in general is not qr. For it to
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be qr with a carefully-chosen H, we shall see in Lemma 5.4 that S is forced not
only to be gr, but be locally linearly nondegenerate in the sense that there exists
¢ > 0 so that for a.e, x

|S(z +p) ~ S(x))
Ip|

(2.1) > ¢|S(z)[ >0, |p| < pol).
Many qr maps satisfy conditions like (2.1); a familiar example is the winding map
(7, p. 13] near z = 0. Nothing like (2.1) holds in general for analytic functions
near points of ramification; in particular (2.1) fails for sin z itself.

As suggested in [7, p. 15], divide R™ into congruent cylinders C by means of
the hyperplanes H; ;: z; = % +k, 1<j<n-1, k€ Z. Let Cy be that which
contains 0. Let C} = {z € Coszn > § — ||2/||*}, let co = sinh™*(1), and we will

define a K-qc, L-bilipschitz map
g:Cy — V't ={z e R";|2'| < n/2,2, > co}

with g = g 0 g;. Here g1(¢',zn) = (¢/,xn + ||2']|* — 3) maps Cj onto Cff =
{x € Co;z > 0}, and ga(a’,xa) = (k(2’),zn + co), where k is a K-qc locally
L-bilipschitz map of Q'(0, 3) onto B'(/2), maps Cf to V*.

The map h: VT — R" with

(2:2) h(ylv Yn) = (Cla n) = (iy?:I sin ‘y,‘COShyn’ cos Iy,ls.lnhyn)

sends V* 0 {y, = ¢}, ¢ > cp, onto the upper half of the ellipsoid E(coshc, sinh c)
of height sinhe, base B(coshc), and this mapping is q¢c on V*. Indeed let
X ={z==x+1y € Gy > co}. Then for each fixed ' € §', the function
s: X — R* given by

s(z,y) = h(za',y)
= ((sgnzsin |z| coshy)z’, cos [z|sinhy)

= (sinz cosh y)2’ + (cos z sinh y)z,

becomes the usual sine function when n = 2, 2’ =1, z9 = i. That h is qr now

follows as in {6, p. 65]. The composition

(2.3) S=hog
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is qr and maps Cg onto R’} \ E(coshcg, 1).
The function S is next extended to all of Cy. First, for z € C§ set S(z) = S(
The set

T = Co\(C5 U CF)

is a lipschitz polyhedron of height 1, and S maps 8T onto E = E(cosh ¢o,sinh ¢}
= FE(coshcp, 1) in a bilipschitz manner. S then may be extended into T as a
K-qc, L-bilipschitz homeomorphism onto E with S(T) = S(z), S(0) = 0.

This defines S on all of Cy, and since S: 9Cy — R*~!, S may be repeatedly
reflected across the faces of the various cylinders C to be defined on all R*. The
branch set consists of the (n — 2)-cells which are common to at least three faces of
the cylinders C, together with {{Jo 9C}NR*~. Note that if z € R*, z, = ¢ > co,
then

|sinh¢| < |S(z)| < coshe.

We call S a gr sine function: S is periodic (period 1) in each of the first n — 1
variables, |S| —+ co uniformly as |z, | — 00, and S(0) = 0.
LEMMA 2.4: S is gr of order n — 1, and there exists ¢ > 0 such that (2.1) holds.

Proof: That A = n — 1 follows from the above estimate of |{S(x)| and the
definition of order, and we have already seen that S is qr. We next consider
(2.1).

Let y € V¥ and let P be (a/the) two-dimensional plane through y and the
z’ = 0 axis. The complex function sin z is analytic with (sinz)’ = cosz, and
|sinz| > 1, |cosz| > 1 when |Im 2| > ¢p > 0. Hence if also p € P, |p| < po(y),
we find from (2.2) and the fact that y, > 1 that

[h(y +p) — h(y)| > a1lpllh(y)| (p€ P, Ipl < p1(¥)),

and since h is K-qc at y, we deduce that

(2.5) [h(y +p) = h(y)l > alplia(¥)]  (Ipl < Po(v)),
where a = a(ay, K, n).
Since g is bilipschitz, (2.1) follows from (2.3) and (2.5) for z € C{ U C3:
|S(z +p) — S(z)| = [h(g(z + p)) — h(g())]
> zalg(z +p) - 9(2)|S(2)
2 clplS(z)  (Ip| < po)-
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In addition, S is bilipschitz in T with |S(z)| < cosh¢p, so (2.1) again holds for
x € T for some ¢ > 0. Finally, we obtain (2.1) for all x by noting that S has
been extended to all of R* by reflection on the faces of the cylinders C.

Remarks 2.6: If we were to use (2.2) on all of V = {z € R"; |2'| < ©/2} rather
than V+, estimate (2.1) would fail near the points of 8V NR"~!, Note also that
if 0 < A <1, each set

(2.7) Wy ={z e R*, |S(z)| < A}

is a disjoint union of n-cells, symmetric with respect to R*~!, one compactly
contained in each cylinder C, and to each of which may be associated a point
(4,0) € Z"~! x {0} as center.

3. A forest of trees

First, let L be a tree which for each k > 1 contains 25" edges of generation k,
each of which is attached to one edge of order k ~ 1 and to 2™ of order k + 1;
generation 0 is the common initial point of the 2" first-generation edges. Let S
be the cell

(3.1) S={zeR*0<z;<1,1<i<n}

Then to each a € S is associated a path L{a) in L whose edge of generation
k corresponds to the approximation to a of the first k binary digits in each

coordinate:

(3.2) ar = (ala}...al, ..., .a%a}...a})

with each a, € {0,1}. This correspondence is coherent in the sense that if an

edge of generation k joins one of generation k + 1, then ax — ax41 € Q(0,27%).
Consider the integral points j = (j1,J2,.--,5n) € Z". The rank of j is the

integer ||j]| = N = max|jk|. To each j € Z™ will correspond the closed cell

(3.3) sz{xER";OSxi-jigl,ISiSn}

in R® and a tree L; will be associated to j. Each L; is combinatorially equivalent
to L, and each number b € S;, where b =a + j, a € S, corresponds to the path



78 D. DRASIN Isr. J. Math.

L;(b) which is combinatorially congruent to the L(a) described above. Note that
US; = R*. We say L; is of rank N if ||j]| = N.

Each L; is realized geometrically in a unique region D; C R"~!, such that each
D; and Dy are congruent by a rigid motion of R"~!. Each D; is a paraboloid
region, with

Do={a;z5+ - +22_; <z},
and D; is said to be of rank N if N is the rank of j. We construct a rapidly-
increasing sequence {rj }, with ro = 0, such that the vertex of each D; of rank
N lies on S'(ry) and D; C {|z'] > rn}. The {rps} are chosen so that if D; and
Dy, meet S(r) and d is Euclidean distance, then

d(Dj N S’(T),Dk N SI(T)) >2y >1 (1‘ > ’I‘M).

By choosing the {ry} appropriately, the dys T 0o as fast as desired. In §5 we
impose conditions which force the das to increase rapidly.

Each L; of rank N is placed in D;N{|z’| > rn41}. Those edges of L; of gener-
ation k, L;k) are realized as straight lines in R*~! contained in A’(r N4k, "N +1k+1)
such that if ¢ and ¢’ are of the kth generation but have different ancestors in
L¢™Y, then

(3.4) A6, 0) > 2dn
and
(3.5) d(¢,0D;) > 2dn 1.

Note that only a fixed number of D; meet any A'(ra, rar41), so (3.4) and (3.5)

can be ensured if rpsq;/ray is large.

4. Near-Mobius mappings

Our function f depends on two classes of quasiconformal mappings, which we
call po and ¢k (k > 1). Our first result will yield g, and the others will follow
from Lemma 4.2.

LEMMA 4.1: Given K > 1,N > 0,6 > 0, there exists R = R(K,N,d,n) such
that to each b € Q(0, N + 1) corresponds a K-qc map ¢ of R* with
p(w) =w (lw] > R),
=w+b (w € Q(0,4)).
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LEMMA 4.2: Given K > 1, R > 0, there exists 6 = §(K, R,n) > 0 such that to
each a € Q(0,4) corresponds a K-qc map v of R* with

P(w) = w (lw] > R),
=w+a (w € Q0, 6)).
(The proofs are routine; for a proof in the two-dimensional case, see [1] or [2].)

Remark 4.3: For a given K > 1, choose Ky, K1,... > 1 with

[ov)

(4.4) [15: < K.

0

Then Lemma 4.2 is used with elementary normal family considerations.
(A) For k > 1let the {Ri}, {dx} be bounded, let {b;}$° be a bounded sequence.
Let 1 be chosen as in Lemma 4.2 with data K = Ky, R = Rr,0 = 6,0 =

br — bi—1, where we suppose that
(4.5) b — b1 € Q(0, 8).

Let ¢ satisty

(4.6) Pr(w) = Yr(w — bg—1) + e,
so that

er(w) =w (lw — br—1| > R&),
(4.7) cwtbe—ber (€ Qber, k).
If we write
(4.8) S =propry0-ropr  (k>1),

then the @, form a normal family of K-qc homeomorphisms.

(B) If in addition ¥~ Ry < oo (so that ¥ 6x < 00), then the {®;} tend normally
to a gqc homeomorphism.

Lemmas 4.1 and 4.2 give, for each N € Z™, sequences

Ro(Ny>Ry>--->Rg>+-, Re—0 (k- 00),
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and & (k > 0) in the following way. First take dp = 1 and for each N > 0 choose
Ry = Ry(N) according to Lemma 4.1 with K = Ky, Ky from (4.4). Then for
k > 1, take inductively Ry so that 0 < Ry < min(Rg_1,27%) and

(4.9) B(6Rx) C Q(0,0k-1),

and then K = K} and &, from (4.4) and Lemma 4.2 respectively. The mappings
or will be constructed in §5 with specific b = by, using (4.6) when k£ > 1. Note
that Ro(N) — oo(N — o0) but that ) ;° Rk < 1; thus alternative (B) will apply
to any of our families {®;}.

Finally, we introduce a subsequence of integers {k}p>0 with

(4.10) 2% < bpn.

5. Proof of Theorem 1.1
With €5 > 0 to be chosen, let H: R*~! — R* be smooth such that

(5.1) H@)=1 (@@, 1)n(uD;)=0),
(5.2) H(z') <1+ || (' e R*71Y,
and

(5.3) [Vieg H(z')|<ep (' € R*1).

LEMMA 5.4: Ifeq is sufficiently small in (5.3), S(z) is from §2, and = = (', z,,.),
then
fo(z) = H(2")S(x)
is gr on R™, of order n-1.
Proof: Let z and p be in R*. Then
Afo = fo(z +p) — fo(z)
=S(z+p)(H(z+p) - H(z)) + H(z)(S(z +p) — S(z))
=SAH + HAS.

By Lemma 2.4, H|AS| > ¢H|S||p| (Jp| < po), so that if &g < 3¢, (5.3) implies
that

A fol — HIAS|| = [S||AH| < 20 |p|H|S|
< $HIAS|  (Ip| < po)-
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Since S is K-qc, it follows that if  is fixed and |h| < ho(z), then

sup |Afo| < 3H(z) sup |AS]|
lpl=h lpl=h

< 3H(z)K inf |AS
< 3H(@)K inf |AS]

<3K inf |Afol,

so by [7, p. 42] fo is qr. That fo has order n — 1 follows from (5.1), (5.2) and
Lemma 2.4.

Now let j € Z™ be fixed with ||j]| = N, and D; C R*~! and {dp} be as at the
end of §3. In D; we construct sets D;(p) (p > 0) with D;(p) C {|z']| > rn4r,+1}
and

-D(p) € Dy(p—1) C -+ C D;(0) € Dy,

where the k, are from (4.10). Thus for m > N +k, + 1, let
(55) D](p) ﬂAI(Tm,’I‘m+1) = {IL’ (S D]‘ ﬂAl(Tm,’f'm+1), dl(iL', L]) < dm/(p+2)},

by (3.4) and (3.5) we have 2"*» components D;(p). Below we will usually think
of j as fixed and usually write D(p) for D;(p). The value of the {D(p)} is that
if b=a+j and b’ = a’ 4 j are associated to two edges of L; N D(p) for a single
component D(p), then by (3.2) and (4.10),

(5.6) b—b =a—d €Q0,27%) C Q(0,8,41)-
We may slightly perturb the D(p) so each D(p) is composed of portions of
R n{| Jact,

where the C’s are the cylinders introduced in §2.

Now let us construct f. In order to achieve this, we will be forced to have the
ratios dyr41/dy (and hence ras4q/7a in §3) increase rapidly.

If 2’ € R*~1, let C = C(z') be a cylinder C which contains z’. We demand,
in addition to (5.1)—(5.3) that for each j

(5.7) 3R0(N) > H(.’L‘,) > 2R0(N),
if |7}l = N and C(z')y N dD;(0) # 0. We then set

(5.8) f(@) = HE)S(@) (C()n{U;D;(0)} = ).



82 D. DRASIN Isr. J. Math.

While (5.7) asserts that H is large near each 0D;(0), we now force H(z') to
become small as ' —» 0o in D;(0) near L;. Thus, given the {Ry}(k > 1) from

§4, we require that

(5.9) 2R, < H(z') < Rp—1 (C(2')n8D;(p) # 0),
(5.10) H() < Ryt (2" € Dy(p))

Note that (5.9) and (5.10) do not depend on N = ||j||, and that all of (5.7}, (5.9)
and (5.10) are possible if the ratios dpsy1/dp — oo sufficiently rapidly in §3.

Now we augment (5.8) and define f in each |J D(0)\ |J(D(1)); we have observed
that there are 2% such components inside each D;. Recall the graph L; C D;.
Then to each D;(0) we choose by = j + ag (with ag € S) which corresponds to
some edge of L; N D(0) as in (3.2). While by is far from unique, we have (5.6)
with p = 0. Thus, to each component D(0), choose gy from Lemma 4.1 with
K=Ky do=1and b=by=j+ap € @(0,N + 1), and set

(5.11) (@) = wo(H(z')S(z)) (z € DO\|JD()).

In general, given p > 1 and D(p) C Dj, then D(p) is nested in a family
D(k), 0 <k < p -1, each contained in D;. Suppose f has been defined in each
D(p~1) by

(512)  f(2) = pp-10pp-z0--0 po(H(&)S() (x € Dlp— D\ JD®)),

where g has just been described, and the ¢ (1 < k < p— 1) have been selected
in accord with Lemma 4.2 and (4.6) with R = Ry, 6 = 0, K = K} and
ar € Q(0,6;) such that by = j + aj corresponds to a corresponding edge of
L; n D(k). Then to each D(p), we associate a, such that j + a, corresponds
to an edge of L; N D(p) as in §3. With a = a,, b, = j + ap, choose a K,-qc
homeomorphism from (4.6) (now with k& = p), and set

(6.13)  f(z)=@popp-10...000(H(2")S(z)) (z€ D(p)\UD(p+1)).

This with (5.8), (5.11) and (5.12) defines f on R".
What is criicial is to see that f is continuous; once that is settled, (4.4), (5.8)
and (5.13) show f is K1-qr for some K1 = K{(K,n). But S, H and all ¢’s are

continuous, so we need only check continuity near each 8D(p), when the factor
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@p is introduced as from (5.12) to (5.13). Thus, let C(z’) N dD(p) # 0. Then
(5.9) and (2.7) imply that H(z)|S(x)| > R,. Our choices (4.9) and Lemmas 4.1
and 4.2 imply that R, < ,-; < --+ < 0; < dp and hence Lemmas 4.1 and 4.2
(see (4.6) and (4.7)) show that the orbit of B(0, R,) under ¢,_1 00 ¢p is

(5.14) B(0, R,) 2% B(bo, Ry) 25 B(by, Rp) 2 --- 22 B(b,_1, R,),

and on B(0, R,) this composition is the translation w — w + b,_;. Hence (4.7)
shows that definitions (5.12) and (5.13) coincide and so f is continuous.

We now prove the Theorem. Let b = a + j € S;, with ||j]| = N. The curve
L(b) on which f(z) — b has been described in §3: in each A (*N4m, T N4m+1)s
kp < m < kpir, it is a segment £ C L; N D(p). So by (5.10) and (2.7),
H(z')|S(z)] < Rp—1. Thus as ¢ — oo, £ € L(b), (5.10) shows that
H(z')S(z) — 0. And by assumption ) R, < o0, so by (B) of Remark 4.3
the @, in (4.8) tend to a qc-homeomorphism ®. However, since b,y — b on
L(b), (4.7), (4.8) and (5.14) show that

&(bo) = b.
Hence as x — oo,z € L{b), we deduce from (5.11) and (5.14) that

f(@) = @ o po(H(z")S(x)) — @ 0 ¢o(0)
= ®(bo) = b.

This completes the proof.
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